Time

SACE Stage 2 physics

Historically

• Time simply ticks one second at a time

 As the observer, your time is always the same, every second seems like every other second no matter what is happening around you

But gravity

Gravity slows time

• Just think of this – the earth's core is younger than its surface? Wow

 But ... you cant feel the difference between every one of your seconds feels like any other second 'to you'

But gravity is a lie – well not really

- Gravity is simply an accelerated reference frame
- Importantly, you cant tell the difference between standing on the earth's surface or being accelerated at 9.8ms⁻² in deep space – because they are the same
- And therefore a tilted car cannot be discerned from an accelerating car without external references

Black hole event horizon

Massive gravity – no time

Yes – since gravity slows time, 'infinite' gravity will stop time

By the way – lets use the correct terminology

 The higher the gravitational potential (the farther the clock is from the source of gravitation), the faster time passes.

$$t_0 = t_f \sqrt{1 - \frac{2GM}{rc^2}} = t_f \sqrt{1 - \frac{r_2}{r}}$$

- t_o in this case is the time observed by an outside observer of the thing in the gravitational field (the slower one)
- You don't need to 'memorise the maths' BUT you need to be able to explain the concept

And ... (terminology)

•
$$r_s = \frac{2GM}{c^2}$$
 is the Schwarzschild radius of the mass M

• the radius defining the event horizon of a Schwarzschild black hole.

What does this mean as you approach a black hole?

$$t_0 = t_f \sqrt{1 - \frac{2GM}{rc^2}} = t_f \sqrt{1 - \frac{r_2}{r}}$$

Think

 If two people are travelling in space at the same average velocity, would it be possible for them to age at different rates?

How does having artificial gravity on a fast travelling space craft change aging?

If you have both artificial gravity and fast speed, you 'slow time twice'